Effects of clumping on temperature I: externally heated clouds

نویسندگان

  • S. D. Doty
  • R. A. Metzler
  • M. L. Palotti
چکیده

We present a study of radiative transfer in dusty, clumpy star-forming regions. A series of self-consistent, three-dimensional, continuum radiative transfer models are constructed for a grid of models parameterized by central luminosity, filling factor, clump radius, and face-averaged optical depth. The temperature distribution within the clouds is studied as a function of this parameterization. Among our results, we find that: (a) the effective optical depth in clumpy regions is less than in equivalent homogeneous regions of the same average optical depth, leading to a deeper penetration of heating radiation in clumpy clouds, and temperatures higher by over 60 per cent; (b)penetration of radiation is driven by the fraction of open sky (FOS) – which is a measure of the fraction of solid angle along which no clumps exist; (c) FOS increases as clump radius increases and as filling factor decreases; (d) for values of FOS > 0.6 − 0.8 the sky is sufficiently “open” that the temperature distribution is relatively insensitive to FOS; (e) the physical process by which radiation penetrates is preferentially through streaming of radiation between clumps as opposed to diffusion through clumps; (f) filling factor always dominates the determination of the temperature distribution for large optical depths, and for small clump radii at smaller optical depths; (g) at lower face-averaged optical depths, the temperature distribution is most sensitive to filling factors of 1 10 per cent, in accordance with many observations; (h) direct shadowing by clumps can be important for distances approximately one clump radius behind a clump.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Temperature Inversion on the Surface of Externally Heated Optically Thick Multigrain Dust Clouds

It was recently discovered that the temperature in the surface layer of externally heated optically thick gray dust clouds increases with the optical depth for some distance from the surface, as opposed to the normal decrease in temperature with distance in the rest of the cloud. This temperature inversion is a result of efficient absorption of diffuse flux from the cloud interior by the surfac...

متن کامل

Temperature Inversion in the Surface of Externally Heated Optically Thick Multigrain Dust Clouds

It was recently discovered that the temperature in the surface layer of externally heated optically thick gray dust clouds increases with the optical depth for some distance from the surface, as opposed to the normal decrease in temperature with distance in the rest of the cloud. This temperature inversion is a result of efficient absorption of diffuse flux from the cloud interior by the surfac...

متن کامل

Dependence of Spectroscopic Properties of Copper Oxide Based Silica Supported Nanostructure on Temperature

Various concentrations of copper were embedded into silica matrix to xerogel forms using copper source Cu(NO3)2∙3H2O. The xerogel samples were prepared by hydrolysis and condensation of Tetraethyl Ortho-Silicate (TEOS) with determination of new molar ratio of the components by the sol-gel method. After ambient drying, the xerogel samples were heated from 60 to 1000˚C at a slow heating rate (50°...

متن کامل

Laminar Flame Speed Prediction in Lean Mixture of Aluminum Dust Clouds by Considering the Effect of Random Distribution of Particles in Two-dimension

        In the present study, the effect of random distribution of reactants and products on laminar, 2D and steady-state flame propagation in aluminium particles has been investigated. The equations are solved only for lean mixture. The flame structure is assumed to consist of a preheat zone, a reaction zone and a post flame zone. It is presumed that in the preheat zone particles are heated an...

متن کامل

Polarized dust emission of magnetized molecular cloud cores

We compute polarization maps for molecular cloud cores modeled as magnetized singular isothermal toroids, under the assumption that the emitting dust grains are aspherical and aligned with the large-scale magnetic field. We show that, depending on the inclination of the toroid with the line-of-sight, the bending of the magnetic field lines resulting from the need to counteract the inward pull o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005